Quantitative Assessment and Grading of Hardware Trojan Threat Based on Rough Set Theory

Author:

Yang DamingORCID,Gao Cheng,Huang Jiaoying

Abstract

The globalization of integrated circuit (IC) design and fabrication has given rise to severe concerns with respect to modeling strategic interaction between malicious attackers and Hardware Trojan (HT) defenders using game theory. The quantitative assessment of attacker actions has made the game very challenging. In this paper, a novel rough set theory framework is proposed to analyze HT threat. The problem is formulated as an attribute weight calculation and element assessment in an information system without decision attributes. The proposed method introduces information content in the rough set that allows calculation of the weight of both core attributes and non-core attributes. For quantitative assessment, the HT threat is characterized by the closeness coefficient. In order to allow HT defenders to use fast and effective countermeasures, a threat classification method based on the k-means algorithm is proposed, and the Best Workspace Prediction (BWP) index is used to determine the number of clusters. Statistical tests were performed on the benchmark circuits in Trust-hub in order to demonstrate the effectiveness of the proposed technique for assessing HT threat. Compared with k-means, equidistant division-based k-means, and k-means++, our method shows a significant improvement in both cluster accuracy and running time.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3