Abstract
Impaired blood flow caused by coronary artery occlusion due to thrombus can cause damage to the heart muscle which is often called Myocardial Infarction (MI). To avoid the complexity of MI diseases such as heart failure or arrhythmias that can cause death, it is necessary to diagnose and detect them early. An electrocardiogram (ECG) signal is a diagnostic medium that can be used to detect acute MI. Diagnostics with the help of data science is very useful in detecting MI in ECG signals. The purpose of study is to propose an automatic classification framework for Myocardial Infarction (MI) with 15 lead ECG signals consisting of 12 standard leads and 3 Frank leads. This research contributes to the improvement of classification performance for 10 MI classes and normal classes. The PTB dataset trained with the proposed 1D-CNN architecture was able to produce average accuracy, sensitivity, specificity, precision and F1-score of 99.98%, 99.91%, 99.99%, 99.91, and 99.91%. From the evaluation results, it can be concluded that the proposed 1D-CNN architecture is able to provide excellent performance in detecting MI attacks.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献