Abstract
Implementing applicable security measures into system engineering applications is still one of the most challenging processes in building secure infrastructure. This process needs to consider a variety of security attributes to support securing system components against numerous cyberattacks that could exploit vulnerable points in the system. The redundancy in these attributes is also another challenge that could degrade system functionality and impact the availability of the system’s services. Therefore, it is crucial to choose appropriate security properties by considering their ability to address cyber threats with minimal negative impacts on the system’s functionality. This process is still subjected to inconsistencies due to ad- oc determinations by a specialist. In this work, we propose a novel algorithm for optimizing the implementation of security mechanisms in IoT applications for the agricultural domain to ensure the effectiveness of the applied mechanisms against the propagation of potential threats. We demonstrate our proposed algorithm on an IoT application in the farming domain to see how the algorithm helps with optimizing the applied security mechanisms. In addition, we used THREATGET to analyze cyber risks and validate the optimized security attributes against the propagation of cyber threats.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献