Abstract
The invention of carbon nanotubes (CNT) has a wide range of industrial and medical applications. The notion of boundary layer flow is used in medicine, particularly in nanomedicine, and the use of magnetic fields is used to treat cancer tumour growth. The governing PDEs are altered into ODEs with the help of suitable transformations. The mass transfer of a chemically reactive species and the flow of MHD over a stretching plate subjected to an inclined magnetic field are investigated, and analytical solutions for velocity in terms of exponential function and temperature field in terms of incomplete Gamma function are obtained using the Laplace transformation. We investigate the variation of physically important parameters with varying suction, magnetic field, and slip using the analytical results. The differences in velocity and temperature profiles are explored in relation to a number of physical parameters. MWCNT nanofluids have higher effective velocities than the SWCNT deferred nanofluids, and this might assist in industrial applications and medical benefits. Earlier research tells us that carbon nanotubes are likely quicker than nanoparticles at achieving the same tumour instance. As a result, in the presence of CNTs or nanoparticles, the magnetic field can also act as a source. We found that SWCNTs nanofluids are better nanofluids than MWCNTs nanofluids.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献