An Effect of Radiation and MHD Newtonian Fluid over a Stretching/Shrinking Sheet with CNTs and Mass Transpiration

Author:

Maranna T.,Sneha K. N.,Mahabaleshwar U. S.,Sarris Ioannis E.ORCID,Karakasidis Theodoros E.ORCID

Abstract

The invention of carbon nanotubes (CNT) has a wide range of industrial and medical applications. The notion of boundary layer flow is used in medicine, particularly in nanomedicine, and the use of magnetic fields is used to treat cancer tumour growth. The governing PDEs are altered into ODEs with the help of suitable transformations. The mass transfer of a chemically reactive species and the flow of MHD over a stretching plate subjected to an inclined magnetic field are investigated, and analytical solutions for velocity in terms of exponential function and temperature field in terms of incomplete Gamma function are obtained using the Laplace transformation. We investigate the variation of physically important parameters with varying suction, magnetic field, and slip using the analytical results. The differences in velocity and temperature profiles are explored in relation to a number of physical parameters. MWCNT nanofluids have higher effective velocities than the SWCNT deferred nanofluids, and this might assist in industrial applications and medical benefits. Earlier research tells us that carbon nanotubes are likely quicker than nanoparticles at achieving the same tumour instance. As a result, in the presence of CNTs or nanoparticles, the magnetic field can also act as a source. We found that SWCNTs nanofluids are better nanofluids than MWCNTs nanofluids.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3