A Reinforcement Learning Based Data Caching in Wireless Networks

Author:

Sheraz Muhammad,Shafique Shahryar,Imran Sohail,Asif Muhammad,Ullah Rizwan,Ibrar Muhammad,Khan Jahanzeb,Wuttisittikulkij Lunchakorn

Abstract

Data caching has emerged as a promising technique to handle growing data traffic and backhaul congestion of wireless networks. However, there is a concern regarding how and where to place contents to optimize data access by the users. Data caching can be exploited close to users by deploying cache entities at Small Base Stations (SBSs). In this approach, SBSs cache contents through the core network during off-peak traffic hours. Then, SBSs provide cached contents to content-demanding users during peak traffic hours with low latency. In this paper, we exploit the potential of data caching at the SBS level to minimize data access delay. We propose an intelligence-based data caching mechanism inspired by an artificial intelligence approach known as Reinforcement Learning (RL). Our proposed RL-based data caching mechanism is adaptive to dynamic learning and tracks network states to capture users’ diverse and varying data demands. Our proposed approach optimizes data caching at the SBS level by observing users’ data demands and locations to efficiently utilize the limited cache resources of SBS. Extensive simulations are performed to evaluate the performance of proposed caching mechanism based on various factors such as caching capacity, data library size, etc. The obtained results demonstrate that our proposed caching mechanism achieves 4% performance gain in terms of delay vs. contents, 3.5% performance gain in terms of delay vs. users, 2.6% performance gain in terms of delay vs. cache capacity, 18% performance gain in terms of percentage traffic offloading vs. popularity skewness (γ), and 6% performance gain in terms of backhaul saving vs. cache capacity.

Funder

Thailand Science research and Innovation Fund Chulalongkorn University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3