Reconfigurable Smart Contracts for Renewable Energy Exchange with Re-Use of Verification Rules

Author:

Górski TomaszORCID

Abstract

Smart contracts constitute the foundation for blockchain distributed applications. These constructs enable transactions in trustless environments using consensus algorithms and software-controlled verification rules. In the current state of the art, there is a shortage of works on the adaptability of smart contracts, and the re-use of their source code is limited mainly to cloning. The paper discusses the pattern of smart contract design and implementation with the overt declaration of verification rules. The author introduces two advantages of the pattern: Firstly, run-time reconfigurability of the list of smart contract verification rules to adjust for various transaction types. Secondly, the re-use of verification rules between different configurations of the smart contract, and among diverse smart contracts. The paper uses blockchain platform-independent stereotypes from a dedicated Unified Modeling Language (UML) profile for designing smart contracts and verification rules. The implementation of the pattern is developed in object-oriented Java language. The pattern exploits polymorphism and controls inheritance by using sealed classes with permission for specialization only for selected final ones. Thus, the pattern ensures two recently highly desired properties in smart contract design and development: re-use and security. Moreover, the declared verification rules list facilitates test automation and reduces test preparation effort due to the re-use of test classes among smart contract configurations. The pattern usage is illustrated in the example of renewable energy exchange within the prosumers community and amid various communities.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3