Different Transport Behaviors between Asian Dust and Polycyclic Aromatic Hydrocarbons in Urban Areas: Monitoring in Fukuoka and Kanazawa, Japan

Author:

Pham Kim-Oanh,Hara Akinori,Zhao Jiaye,Suzuki Keita,Matsuki AtsushiORCID,Inomata YayoiORCID,Matsuzaki Hiroshi,Odajima Hiroshi,Hayakawa Kazuichi,Nakamura Hiroyuki

Abstract

To clarify different effects of Asian dust (AD), long-range transported from Asian continent, on total suspended particles (TSP) and polycyclic aromatic hydrocarbons (PAHs) in Japan, TSP were simultaneously collected during AD periods (from 1 March to 31 May 2020 and 2021) in Fukuoka and Kanazawa. During AD days, decided by Light Detection and Ranging and Japan Meteorological Agency, TSP concentrations increased significantly (p < 0.001) at two sampling sites. PAH concentrations increased in Kanazawa (p < 0.001) but not in Fukuoka on AD days. Correlation coefficients (r) between daily TSP and total PAHs concentrations were weak in Kanazawa: 0.521 (non-AD) and 0.526 (AD) (p < 0.01), and in Fukuoka: 0.321 (non-AD) and 0.059 (AD). However, correlation between seasonal (average monthly) TSP and total PAH concentrations were stronger: 0.680 (Kanazawa) and 0.751 (Fukuoka). The reasons might be that seasonal variations of TSP and total PAHs in two cities depend equally on planetary scale westerly, while daily TSP and total PAHs variations in each city varied by different transportation distances from AD and PAHs sources in the Asian continent to Japan. Different local sources and meteorological conditions were considered. These results are important for elucidating the causes of chronic and acute respiratory diseases.

Funder

Environmental Restoration and Conservation Agency of Japan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3