LiverNet: Diagnosis of Liver Tumors in Human CT Images

Author:

Alawneh KhaledORCID,Alquran HiamORCID,Alsalatie Mohammed,Mustafa Wan AzaniORCID,Al-Issa YazanORCID,Alqudah Amin,Badarneh Alaa

Abstract

Liver cancer contributes to the increasing mortality rate in the world. Therefore, early detection may lead to a decrease in morbidity and increase the chance of survival rate. This research offers a computer-aided diagnosis system, which uses computed tomography scans to categorize hepatic tumors as benign or malignant. The 3D segmented liver from the LiTS17 dataset is passed through a Convolutional Neural Network (CNN) to detect and classify the existing tumors as benign or malignant. In this work, we propose a novel light CNN with eight layers and just one conventional layer to classify the segmented liver. This proposed model is utilized in two different tracks; the first track uses deep learning classification and achieves a 95.6% accuracy. Meanwhile, the second track uses the automatically extracted features together with a Support Vector Machine (SVM) classifier and achieves 100% accuracy. The proposed network is light, fast, reliable, and accurate. It can be exploited by an oncological specialist, which will make the diagnosis a simple task. Furthermore, the proposed network achieves high accuracy without the curation of images, which will reduce time and cost.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leveraging Segmentation and Classification Techniques for Liver cancer Prediction in deep learning;2024 2nd International Conference on Artificial Intelligence and Machine Learning Applications Theme: Healthcare and Internet of Things (AIMLA);2024-03-15

2. Liver Tumor Segmentation and Classification Using Deep Learning Methods;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15

3. Liver cancer classification via deep hybrid model from CT image with improved texture feature set and fuzzy clustering based segmentation;Web Intelligence;2023-07-19

4. EOG Based Eye Movements and Blinks Classification Using Irisgram and CNN-SVM Classifier;2023 6th International Conference on Engineering Technology and its Applications (IICETA);2023-07-15

5. Nucleus Detection Using Deep Learning Approach on Pap Smear Images;2023 6th International Conference on Engineering Technology and its Applications (IICETA);2023-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3