Analysis of the Propulsion Performance and Internal Flow Field of an Underwater Launcher

Author:

Zhang XinweiORCID,Yu Yonggang

Abstract

The gas-curtain launch is designed to address the shortcomings of conventional underwater launchers, such as poor dependability and low muzzle velocity. In this paper, the influence of jet structures on the propulsion performance and internal flow field of an underwater gas-curtain launcher is investigated. To conduct the experiment on a small-aperture underwater launcher, three projectiles with different jet structures were designed. The experimental results show that a projectile with a central nozzle is more conducive to gas-curtain formation than one with four sidewall grooves. Additionally, the central nozzle can reduce launch resistance and improve propulsion performance more effectively. Furthermore, increasing the diameter of the central nozzle aids in gas-curtain formation and propulsion performance. Following the experiment, a numerical model of the internal flow field for gas-curtain launch is built in order to develop numerical simulations under three jet structures. The calculation results show that the three gas-curtain projectiles can likewise acquire good propulsion performance. Different jet structures have significant impacts on the launching resistance of a gas-curtain launcher, thereby affecting its propulsion performance. The launch resistance is lower when the central nozzle jet structure is utilized; however, the muzzle velocity is also lower because more gas is consumed for drag reduction and the projectile force area is smaller. This study reveals the effect of jet structure on the propulsion performance and flow field evolution of a gas-curtain launcher.

Funder

China Postdoctoral Science Foundation

the National Key Laboratory Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3