Quantum Natural Language Processing: Challenges and Opportunities

Author:

Guarasci RaffaeleORCID,De Pietro GiuseppeORCID,Esposito MassimoORCID

Abstract

The meeting between Natural Language Processing (NLP) and Quantum Computing has been very successful in recent years, leading to the development of several approaches of the so-called Quantum Natural Language Processing (QNLP). This is a hybrid field in which the potential of quantum mechanics is exploited and applied to critical aspects of language processing, involving different NLP tasks. Approaches developed so far span from those that demonstrate the quantum advantage only at the theoretical level to the ones implementing algorithms on quantum hardware. This paper aims to list the approaches developed so far, categorizing them by type, i.e., theoretical work and those implemented on classical or quantum hardware; by task, i.e., general purpose such as syntax-semantic representation or specific NLP tasks, like sentiment analysis or question answering; and by the resource used in the evaluation phase, i.e., whether a benchmark dataset or a custom one has been used. The advantages offered by QNLP are discussed, both in terms of performance and methodology, and some considerations about the possible usage QNLP approaches in the place of state-of-the-art deep learning-based ones are given.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference109 articles.

1. Attention is all you need;Vaswani;Adv. Neural Inf. Process. Syst.,2017

2. Language models are unsupervised multitask learners;Radford;OpenAI Blog,2019

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3