Design, Synthesis, and Evaluation of Oleyl-WRH Peptides for siRNA Delivery

Author:

Rai Mrigank Shekhar1,Sajid Muhammad Imran12ORCID,Moreno Jonathan1,Parang Keykavous1ORCID,Tiwari Rakesh Kumar3ORCID

Affiliation:

1. Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA

2. Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan

3. Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific–Northwest, Western University of Health Sciences, Lebanon, OR 97355, USA

Abstract

Delivering nucleic acid therapeutics across cell membranes is a significant challenge. Cell-penetrating peptides (CPPs) containing arginine (R), tryptophan (W), and histidine (H) show promise for siRNA delivery. To improve siRNA delivery and silence a model STAT3 gene, we hypothesized that oleyl acylation to CPPs, specifically (WRH)n, would enhance STAT3 silencing efficiency in breast and ovarian cancer cells. Using Fmoc/tBu solid-phase peptide chemistry, we synthesized, purified, and characterized the oleyl-conjugated (WRH)n (n = 1–4) peptides. The peptide/siRNA complexes were non-cytotoxic at N/P 40 (~20 μM) against MDA-MB-231, MCF-7, SK-OV-3, and HEK-293 cells after 72 h incubation. All peptide/siRNA complexes showed serum stability at N/P ≥ 40. The synthesized conjugates, with a diameter of <100 nm, formed nano-complexes with siRNA and exhibited a stable range of zeta potential values (13–18 mV at N/P = 40). Confocal microscopy and flow cytometry analysis provided qualitative and quantitative evidence of a successful cellular internalization of siRNA. The peptides oleyl-(WRH)3 and oleyl-(WRH)4 showed ~60% and ~75% cellular uptake of siRNA, respectively, in both MDA-MB-231 and SK-OV-3 cells. Western blot analysis of oleyl-(WRH)4 demonstrated effective silencing of the STAT-3 gene, with ~75% silencing in MDA-MB-231 cells and ~45% in SK-OV-3 cells.

Funder

Chapman University School of Pharmacy

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3