Quantum Chemical Study on the Influence of Dodecyl Trimethyl Ammonium Bromide on the CH4 Adsorption of Coal

Author:

Liu ShuoORCID,Gao Jiaxing,Tang Yibo,Wang Junfeng,Ge Shaocheng

Abstract

The adsorption of dodecyl trimethyl ammonium bromide (DTAB) on coal can affect the wettability of coal and change the water absorption of coal. After DTAB treatment, the change in the CH4 adsorption capacity of coal is worth further study. To reveal the microscopic mechanism of the influence of DTAB on the CH4 adsorption capacity of coal, we employed the density functional theory (DFT) with the 6-311 G (d, p) basis set. DFT-based computations interpreted the adsorption process of CH4 and DTAB on coal molecules and determined the stable structure, adsorption distance, Mulliken overlapping populations, and adsorption energies of the two adsorption configurations. The results showed that the adsorption energies of CH4 and DTAB on the molecular model of coal were 2.15 and 42.69 kJ/mol and the adsorption stability distances were 0.261 and 0.238 nm, respectively. The DTAB–coal configuration was more stable than the CH4–coal configuration. When there was competitive adsorption between DTAB and CH4 on coal, the coal molecules preferentially adsorb the DTAB. Infrared spectroscopy and adsorption experiments were also carried out, and the calculation results of quantum chemistry are consistent with the experimental results.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference39 articles.

1. Analysis of methane hazard conditions in mine headings;Brodny;Tehn. Vjesn.,2018

2. Analysis and Assessment of Parameters Shaping Methane Hazard in Longwall Areas

3. Predicting Methane Concentration in Longwall Regions Using Artificial Neural Networks

4. Strategic thinking of simultaneous exploitation of coal and gas in deep mining;Yuan;J. China Coal,2016

5. Forecasting Methane Emissions from Hard Coal Mines Including the Methane Drainage Process

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3