Efficient Ex Vivo Screening of Agents Targeting Thrombospondin1-Induced Vascular Dysfunction Using a Digital Multiwire Myograph System

Author:

Yao Molly,Ganguly SamayitaORCID,Shin Jane Hae Soo,Elbayoumi TamerORCID

Abstract

Homeostasis of vascular tone is intricately and delicately maintained systemically and locally, by autonomic nerves and hormones in the blood and by intimal vasoactive substances, respectively. The balance can be acutely or chronically interrupted secondary to many alterations, especially under pathological conditions. Excessive matricellular glycoprotein thrombospondin 1 (TSP1) levels in circulation have been found to play an important role in ischemia-reperfusion injuries of different organs, by acutely suppressing vasorelaxation and chronically remodeling vascular bed. Our laboratory has been interested in identifying new drug moieties, which can selectively and effectively counteract TSP1-induced vascular dysfunction, in order to address associated clinical complications. Preliminary studies using computational docking and molecular models revealed potential drug candidates for further evaluation via vascular functional bioassay to prove the antagonism using an ex vivo vascular model. Herein, we described an efficient screening method for the identification of active drug candidates, by adapting a multiwire myograph system to perform a protocol with different treatments, in the presence of pathological levels of TSP1. We discussed the promising pharmacological evaluation results and suggested suitable modification for versatile applications. We also described the necessity of pre-determination of optimal resting tension to obtain the maximal response, if the experimental test model is different from those with determined optimal resting tension.

Funder

Cardiovascular Medical Research and Education Fund

Publisher

MDPI AG

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Structural Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3