Future Projections of Heat Waves and Associated Mortality Risk in a Coastal Mediterranean City

Author:

Papadopoulos Giorgos1,Keppas Stavros C.1,Parliari Daphne1ORCID,Kontos Serafim1ORCID,Papadogiannaki Sofia1ORCID,Melas Dimitrios1ORCID

Affiliation:

1. Laboratory of Atmospheric Physics, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Abstract

Climate change has been linked to the escalating frequency, duration, and intensity of heat waves in the Mediterranean region, intensifying health concerns for the general populace. Urban environments face elevated health risks due to concentrated populations and the urban heat island effect, further amplifying nighttime heat conditions. This study aims to project changes in heat wave characteristics and the associated population exposure risk in a large Mediterranean city, Thessaloniki, Greece. High-resolution climate simulations, using the WRF model, were conducted for three 5-year periods (2006–2010, 2046–2050, 2096–2100) under the RCP8.5 emission scenario, covering Thessaloniki with a 2 km grid. By the end of the century, Thessaloniki is projected to experience over 60 annual heat wave days, compared to ~8 in the present climate, while some episodes were found to persist beyond 30 days. The relative risk during heat wave days is expected to rise, which is primarily due to nighttime heat stress. Interestingly, the results indicate that minimum apparent temperature might be a more reliable indicator in predicting heat-related mortality compared to maximum apparent temperature. These findings emphasize the growing importance of informed heat mitigation and adaptation strategies and healthcare preparedness in urban areas facing escalating heat-related health challenges.

Funder

LIFE Programme of the European Union

National Development Program, General Secretariat of Research and Innovation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference99 articles.

1. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

2. Climate change Hot-Spots;Giorgi;Geophys. Res. Lett.,2006

3. Climate change projections for the Mediterranean region;Giorgi;Glob. Planet. Chang.,2008

4. Why Is the Mediterranean a Climate Change Hot Spot?;Tuel;J. Clim.,2020

5. Climate change and interconnected risks to sustainable development in the Mediterranean;Cramer;Nat. Clim. Chang.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3