Comparing the Utility of Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN) on Sentinel-2 MSI to Estimate Dry Season Aboveground Grass Biomass

Author:

Vawda Mohamed Ismail1ORCID,Lottering Romano1ORCID,Mutanga Onisimo1ORCID,Peerbhay Kabir1ORCID,Sibanda Mbulisi2ORCID

Affiliation:

1. Discipline of Geography, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, Pietermaritzburg 3209, South Africa

2. Department of Geography, Environmental Studies and Tourism, University of the Western Cape, P/Bag X17, Bellville 7535, South Africa

Abstract

Grasslands are biomes of significant fiscal, social and environmental value. Grassland or rangeland management often monitors and manages grassland productivity. Productivity is determined by various biophysical parameters, one such being grass aboveground biomass. Advancements in remote sensing have enabled near-real-time monitoring of grassland productivity. Furthermore, the increase in sophisticated machine learning algorithms has provided a powerful tool for remote sensing analytics. This study compared the performance of two neural networks, namely, Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN), in predicting dry season aboveground biomass using open-access Sentinel-2 MSI data. Sentinel-2 spectral bands and derived vegetation indices were used as input data for the two algorithms. Overall, findings in this study showed that the deep CNN outperformed the ANN in estimating aboveground biomass with an R2 of 0.83, an RMSE of 3.36 g/m2 and an RMSE% of 6.09. In comparison, the ANN produced an R2 of 0.75, an RMSE of 5.78 g/m2 and an RMSE% of 8.90. The sensitivity analysis suggested that the blue band, Green Chlorophyll Index (GCl), and Green Normalised Difference Vegetation Index (GNDVI) were the most significant for model development for both neural networks. This study can be considered a pilot study as it is one of the first to compare different neural network performances using freely available satellite data. This is useful for more rapid biomass estimation, and this study exhibits the great potential of deep learning for remote sensing applications.

Funder

WRC

National Research Foundation

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3