A Modified Particle Swarm Algorithm for the Multi-Objective Optimization of Wind/Photovoltaic/Diesel/Storage Microgrids

Author:

Wu Xueyang12,Shan Yinghao12,Fan Kexin12

Affiliation:

1. College of Information Science and Technology, Donghua University, Shanghai 201620, China

2. Engineering Research Center of Digitized Textile and Apparel Technology, Ministry of Education, Donghua University, Shanghai 201620, China

Abstract

Microgrids have been widely used due to their advantages, such as flexibility and cleanliness. This study adopts the hierarchical control method for microgrids containing multiple energy sources, i.e., photovoltaic (PV), wind, diesel, and storage, and carries out multi-objective optimization in the tertiary control, i.e., optimizing the economic cost, environmental cost, and the degree of energy utilization of microgrids. As the traditional multi-objective particle swarm algorithm is prone to local convergence, this study introduces variable inertia weight and learning factors to obtain a modified particle swarm algorithm, which is more advantageous in multi-objective optimization. Compared to the traditional particle swarm algorithm, the modified particle swarm algorithm increased the photovoltaic absorbed rate from 0.7724 to 0.8683 and the wind energy absorbed rate from 0.6064 to 0.7158 in one day, which resulted in an increase in energy utilization by 14.89%, and a reduction in financial environmental costs from RMB 135,870 to RMB 132,230. The simulation of the optimization effect of the conventional particle swarm algorithm and the modified particle swarm algorithm on the microgrid were carried out, respectively, in MATLAB, which verifies the advantage of the modified particle swarm algorithm on the optimization of microgrids. Then, the optimization results, i.e., the data of the power scheduling process of the four power sources, were made into a table and imported into the microgrid model in Simulink. The simulation results indicated that the microgrid was able to output stable voltage, current, and frequency. Finally, the changes in microgrids affected by the external environment were further investigated from the aspects of the market environment and natural environment. Moreover, we verified the presence of a contradiction between the optimization of the microgrid economy and environmental protection. Thus, microgrids need to adjust their optimization focus according to the natural conditions in which they are located.

Funder

National Natural Science Foundation of China

Shanghai Sailing Program

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3