Improving Mining Sustainability and Safety by Monitoring Precursors of Catastrophic Failures in Loaded Granite: An Experimental Study of Acoustic Emission and Electromagnetic Radiation

Author:

Wang Dongming1,Ma Yankun2,Liu Xiaofei1ORCID,Li Dexing1ORCID,Liu Quanlin1,Yang Hengze1,Li Xuelong3ORCID

Affiliation:

1. School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. Key Laboratory of Safety and High–Efficiency Coal Mining, Anhui University of Science and Technology, Huainan 232001, China

3. College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

Effective monitoring and early warning methods are crucial for enhancing safety and sustainability in deep coal resource extraction, particularly in mitigating rock burst disasters triggered by abrupt rock failure under high–ground–stress conditions. This paper presents the results of experimental investigations that involved conventional uniaxial direct and graded mechanical tests on granite that concurrently collected acoustic emission (AE) and electromagnetic radiation (EMR) signals. This study focused on the temporal evolution patterns of characteristic parameters in AE and EMR signals during granite deformation and fracture processes. To deconstruct and understand these temporal evolution characteristics, multifractal and critical slowing–down theories are introduced. The research findings reveal significant correlations between the evolution of AE and EMR characteristic parameters and the stages of rock deformation and fracture. Notably, dynamic changes in multifractal parameters (Δα and Δf) quantitatively reflected the deformation and fracture processes, with abrupt increases in Δα and sudden decreases in Δf closely associated with large–scale rock fractures. The temporal continuity of critical slowing–down parameters (variance and autocorrelation coefficient) demonstrated increased sensitivity as rock destruction approaches, with the variance emerging as a crucial indicator for large–scale fractures. This study observed a sudden increase in the variance of AE and EMR signals when the stress level reached 80–90% of the peak stress. Joint monitoring through diverse methods and multiple indicators enhanced the effectiveness of rock burst disaster warnings, contributing to the safety and sustainability of coal resource extraction. Further refinement and exploration of these indicators offer promising avenues for advancing rock failure monitoring and early warning capabilities in coal mines.

Funder

Open Foundation of Key Laboratory of Safety and High–efficiency Coal Mining, Ministry of Education

National Natural Science Foundation of China

Science and Technology Planning Project of Guizhou Province, China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3