Scan-Chain-Fault Diagnosis Using Regressions in Cryptographic Chips for Wireless Sensor Networks

Author:

Lim Hyunyul,Cheong Minho,Kang Sungho

Abstract

Scan structures, which are widely used in cryptographic circuits for wireless sensor networks applications, are essential for testing very-large-scale integration (VLSI) circuits. Faults in cryptographic circuits can be effectively screened out by improving testability and test coverage using a scan structure. Additionally, scan testing contributes to yield improvement by identifying fault locations. However, faults in circuits cannot be tested when a fault occurs in the scan structure. Moreover, various defects occurring early in the manufacturing process are expressed as faults of scan chains. Therefore, scan-chain diagnosis is crucial. However, it is difficult to obtain a sufficiently high diagnosis resolution and accuracy through the conventional scan-chain diagnosis. Therefore, this article proposes a novel scan-chain diagnosis method using regression and fan-in and fan-out filters that require shorter training and diagnosis times than existing scan-chain diagnoses do. The fan-in and fan-out filters, generated using a circuit logic structure, can highlight important features and remove unnecessary features from raw failure vectors, thereby converting the raw failure vectors to fan-in and fan-out vectors without compromising the diagnosis accuracy. Experimental results confirm that the proposed scan-chain-diagnosis method can efficiently provide higher resolutions and accuracies with shorter training and diagnosis times.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3