Author:
Zhang Gong,Si Yujuan,Yang Weiyi,Wang Di
Abstract
Cardiovascular disease is the leading cause of death worldwide. Immediate and accurate diagnoses of cardiovascular disease are essential for saving lives. Although most of the previously reported works have tried to classify heartbeats accurately based on the intra-patient paradigm, they suffer from category imbalance issues since abnormal heartbeats appear much less regularly than normal heartbeats. Furthermore, most existing methods rely on data preprocessing steps, such as noise removal and R-peak location. In this study, we present a robust classification system using a multilevel discrete wavelet transform densely network (MDD-Net) for the accurate detection of normal, coronary artery disease (CAD), myocardial infarction (MI) and congestive heart failure (CHF). First, the raw ECG signals from different databases are divided into same-size segments using an original adaptive sample frequency segmentation algorithm (ASFS). Then, the fusion features are extracted from the MDD-Net to achieve great classification performance. We evaluated the proposed method considering the intra-patient and inter-patient paradigms. The average accuracy, positive predictive value, sensitivity and specificity were 99.74%, 99.09%, 98.67% and 99.83%, respectively, under the intra-patient paradigm, and 96.92%, 92.17%, 89.18% and 97.77%, respectively, under the inter-patient paradigm. Moreover, the experimental results demonstrate that our model is robust to noise and class imbalance issues.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献