A Remote Sensing Image Super-Resolution Reconstruction Model Combining Multiple Attention Mechanisms

Author:

Xu Yamei1ORCID,Guo Tianbao1ORCID,Wang Chanfei1

Affiliation:

1. School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China

Abstract

Remote sensing images are characterized by high complexity, significant scale variations, and abundant details, which present challenges for existing deep learning-based super-resolution reconstruction methods. These algorithms often exhibit limited convolutional receptive fields and thus struggle to establish global contextual information, which can lead to an inadequate utilization of both global and local details and limited generalization capabilities. To address these issues, this study introduces a novel multi-branch residual hybrid attention block (MBRHAB). This innovative approach is part of a proposed super-resolution reconstruction model for remote sensing data, which incorporates various attention mechanisms to enhance performance. First, the model employs window-based multi-head self-attention to model long-range dependencies in images. A multi-branch convolution module (MBCM) is then constructed to enhance the convolutional receptive field for improved representation of global information. Convolutional attention is subsequently combined across channels and spatial dimensions to strengthen associations between different features and areas containing crucial details, thereby augmenting local semantic information. Finally, the model adopts a parallel design to enhance computational efficiency. Generalization performance was assessed using a cross-dataset approach involving two training datasets (NWPU-RESISC45 and PatternNet) and a third test dataset (UCMerced-LandUse). Experimental results confirmed that the proposed method surpassed the existing super-resolution algorithms, including Bicubic interpolation, SRCNN, ESRGAN, Real-ESRGAN, IRN, and DSSR in the metrics of PSNR and SSIM across various magnifications scales.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Reference27 articles.

1. A comprehensive review on deep learning based remote sensing image super-resolution methods;Wang;Earth-Sci. Rev.,2022

2. A Review of Single Image Super Resolution Techniques using Convolutional Neural Networks;Dixit;Multimed. Tools Appl.,2024

3. Yu, W., and Liang, X. (2023, January 23–25). A review of research on super-resolution image reconstruction based on deep learning. Proceedings of the 8th International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Okinawa, Japan.

4. Deep learning for single image super-resolution: A brief review;Yang;IEEE Trans. Multimed,2019

5. Real-world single image super-resolution: A brief review;Chen;Inf. Fusion,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3