Abstract
Software aging is a phenomenon referring to the performance degradation of a long-running software system. This phenomenon is an accumulative process during execution, which will gradually lead the system from a normal state to a failure-prone state. It is a crucial challenge for system reliability to predict the Aging-Related Failures (ARFs) accurately. In this paper, permutation entropy (PE) is modified to Multidimensional Multi-scale Permutation Entropy (MMPE) as a novel aging indicator to detect performance anomalies, since MMPE is sensitive to dynamic state changes. An experiment is set on the distributed database system Voldemort, and MMPE is calculated based on the collected performance metrics during execution. Finally, based on MMPE, a failure prediction model using the machine learning method to reveal the anomalies is presented, which can predict failures with high accuracy.
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献