Novel Artificial Intelligence-Based Assessment of Imaging Biomarkers in Full-Thickness Macular Holes: Preliminary Data from a Pivotal Trial

Author:

Mariotti Cesare1,Mangoni Lorenzo1ORCID,Iorio Silvia1,Lombardo Veronica1,Fruttini Daniela2ORCID,Rizzo Clara3,Chhablani Jay4ORCID,Midena Edoardo56,Lupidi Marco17ORCID

Affiliation:

1. Eye Clinic, Department of Experimental and Clinical Medicine, Polytechnic University of Marche, 60131 Ancona, Italy

2. Department of Medicine and Surgery, University of Perugia, S. Maria della Misericordia Hospital, 06123 Perugia, Italy

3. Ophthalmic Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, 37129 Verona, Italy

4. Department of Ophthalmology, UPMC Eye Center, University of Pittsburgh, Pittsburgh, PA 15213, USA

5. Department of Ophthalmology, University of Padova, 35128 Padova, Italy

6. IRCCS—Fondazione Bietti, 00198 Rome, Italy

7. Fondazione per la Macula Onlus, Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), University Eye Clinic, 16132 Genova, Italy

Abstract

Artificial intelligence (AI)- and deep learning (DL)-based systems have shown significant progress in the field of macular disorders, demonstrating high performance in detecting retinal fluid and assessing anatomical changes during disease progression. This study aimed to validate an AI algorithm for identifying and quantifying prognostic factors in visual recovery after macular hole (MH) surgery by analyzing major optical coherence tomography (OCT) biomarkers. This study included 20 patients who underwent vitrectomy for a full-thickness macular hole (FTMH). The mean diameter of the FTMH was measured at 285.36 ± 97.4 μm. The preoperative best-corrected visual acuity (BCVA) was 0.76 ± 0.06 logMAR, improving to 0.38 ± 0.16 postoperatively, with a statistically significant difference (p = 0.001). AI software was utilized to assess biomarkers, such as intraretinal fluid (IRF) and subretinal fluid (SRF) volume, external limiting membrane (ELM) and ellipsoid zone (EZ) integrity, and retinal hyperreflective foci (HRF). The AI analysis showed a significant decrease in IRF volume, from 0.08 ± 0.12 mm3 preoperatively to 0.01 ± 0.01 mm3 postoperatively. ELM interruption improved from 79% ± 18% to 34% ± 37% after surgery (p = 0.006), whereas EZ interruption improved from 80% ± 22% to 40% ± 36% (p = 0.007) postoperatively. Additionally, the study revealed a negative correlation between preoperative IRF volume and postoperative BCVA recovery, suggesting that greater preoperative fluid volumes may hinder visual improvement. The integrity of the ELM and EZ was found to be essential for postoperative visual acuity improvement, with their disruption negatively impacting visual recovery. The study highlights the potential of AI in quantifying OCT biomarkers for managing MHs and improving patient care.

Publisher

MDPI AG

Reference41 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3