Regularized Optimal Transport Based on an Adaptive Adjustment Method for Selecting the Scaling Parameters of Unscented Kalman Filters

Author:

Kang Chang Ho,Kim Sun YoungORCID

Abstract

In this paper, an adaptation method for adjusting the scaling parameters of an unscented Kalman filter (UKF) is proposed to improve the estimation performance of the filter in dynamic conditions. The proposed adaptation method is based on a sequential algorithm that selects the scaling parameter using the user-defined distribution of discrete sets to more effectively deal with the changing measurement distribution over time and avoid the additional process for training a filter model. The adaptation method employs regularized optimal transport (ROT), which compensates for the error of the predicted measurement with the current measurement values to select the proper scaling parameter. In addition, the Sinkhorn–Knopp algorithm is used to minimize the cost function of ROT due to its fast convergence rate, and the convergence of the proposed ROT-based adaptive adjustment method is also analyzed. According to the analysis results of Monte Carlo simulations, it is confirmed that the proposed algorithm shows better performance than the conventional algorithms in terms of the scaling parameter selection in the UKF.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference43 articles.

1. Bar-Shalom, Y., Li, X.R., and Kirubarajan, T. (2004). Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software, John Wiley & Sons.

2. Beyond the Kalman filter;IEEE Aerosp. Electron Syst. Mag.,2004

3. Unscented and square-root unscented Kalman filters for quaternionic systems;Int. J. Robust Nonlinear Control,2018

4. Variants of extended Kalman filtering approaches for Bayesian tracking;Int. J. Robust Nonlinear Control,2016

5. Jahic, A., and Konjic, T. (2016, January 6–9). Forecast-aided distribution system state estimation. Proceedings of the IET MedPower 2016, Belgrade, Serbia.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3