Personalized LSTM Models for ECG Lead Transformations Led to Fewer Diagnostic Errors Than Generalized Models: Deriving 12-Lead ECG from Lead II, V2, and V6

Author:

Shyam Kumar Prashanth1ORCID,Ramasamy Mouli1,Kallur Kamala Ramya2,Rai Pratyush3,Varadan Vijay K.14

Affiliation:

1. The Department of Engineering Science and Mechanics, The Pennsylvania State University, 212 Earth-Engineering Sciences Bldg, University Park, PA 16802, USA

2. Geisinger Medical Center, 100 North Academy Avenue, Danville, PA 17822, USA

3. The Department of Biomedical Engineering, The University of Arkansas, 4183 Bell Engineering Center, Fayetteville, AR 72701, USA

4. The Department of Neurosurgery, Milton S. Hershey Medical Center, 500 University Dr, Hershey, PA 17033, USA

Abstract

Background and Objective: The prevalence of chronic cardiovascular diseases (CVDs) has risen globally, nearly doubling from 1990 to 2019. ECG is a simple, non-invasive measurement that can help identify CVDs at an early and treatable stage. A multi-lead ECG, up to 15 leads in a wearable form factor, is desirable. We seek to derive multiple ECG leads from a select subset of leads so that the number of electrodes can be reduced in line with a patient-friendly wearable device. We further compare personalized derivations to generalized derivations. Methods: Long-Short Term Memory (LSTM) networks using Lead II, V2, and V6 as input are trained to obtain generalized models using Bayesian Optimization for hyperparameter tuning for all patients and personalized models for each patient by applying transfer learning to the generalized models. We compare quantitatively using error metrics Root Mean Square Error (RMSE), R2, and Pearson correlation (ρ). We compare qualitatively by matching ECG interpretations of board-certified cardiologists. Results: ECG interpretations from personalized models, when corrected for an intra-observer variance, were identical to the original ECGs, whereas generalized models led to errors. Mean performance values for generalized and personalized models were (RMSE-74.31 µV, R2-72.05, ρ-0.88) and (RMSE-26.27 µV, R2-96.38, ρ-0.98), respectively. Conclusions: Diagnostic accuracy based on derived ECG is the most critical validation of ECG derivation methods. Personalized transformation should be sought to derive ECGs. Performing a personalized calibration step to wearable ECG systems and LSTM networks could yield ambulatory 15-lead ECGs with accuracy comparable to clinical ECGs.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3