Experimental and CFD Assessment of Harmonic Characteristics of Point-Absorber Wave-Energy Converters with Nonlinear Power Take-Off System

Author:

Yi Yang1,Sun Ke12,Liu Yongqian1,Ma Gang3ORCID,Zhao Chuankai4,Zhang Fukang5,Zhang Jianhua6ORCID

Affiliation:

1. School of New Energy, North China Electric Power University, Beijing 102206, China

2. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

3. Yantai Research Institute, Harbin Engineering University, Yantai 264006, China

4. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China

5. Xiamen Sunrui Wind Power Technology Co., Ltd., Luoyang Ship Material Research Institute, Xiamen 361100, China

6. College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

The wave-energy excitation of point absorbers is highly associated with their resonant movement, and harmonic characteristics are of increasing concern in affecting resonance. However, the commonly used linearized power take-off (PTO) systems underestimate the impact of harmonics. The purpose of this study is to address the knowledge gap in assessing the contribution of hydraulic PTO systems to higher harmonic wave loads and velocities. In the present work, higher harmonics in point-absorber wave-energy converters (PA-WECs) with hydraulic power take-off (PTO) systems are investigated through both experimental and computational fluid dynamics (CFD) methods. The fast Fourier transform is used to decompose the high-order harmonics. To account for the influence of nonlinear wave–wave interaction on harmonics, the isolated PA-WEC is used as a basis for comparison with the paired PA-WECs. The influence of wave steepness is also estimated at two resonance periods. Results indicate that the additional resonance of the paired PA-WECs may be attributed to the harmonic wave loads at longer wave periods. Harmonic wave loads of paired PA-WECs typically have a more substantial impact and increase more rapidly with increasing wave steepness compared to isolated PA-WECs. Furthermore, as the wave steepness increases, there are significant enhancements in both the harmonic wave loads and heaving velocity, which strongly correlate with the instantaneous maximum hydraulic power. Consequently, our study will contribute to enhancing the maximum power output in the design of future point absorber arrays.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Joint Laboratory of Offshore Wind Power and Intelligent Energy System

Key Research and Development Program of Shandong Province

Research on smart operation control technologies for offshore wind farms

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonlinear hydrodynamics of floating offshore wind turbines: A review;Renewable and Sustainable Energy Reviews;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3