Hydrodynamic Response of a Large-Scale Mariculture Ship Based on Potential Flow Theory

Author:

He Chaonan1,Zhou Linqing1,Ma Xinwei1ORCID

Affiliation:

1. School of Ocean Engineering, Harbin Institute of Technology, Weihai 264209, China

Abstract

The marine fishery will be the main form of the marine economy in the future. Simulating a hydrodynamic response under normal and extreme working conditions is the main means of structural analysis and design of a mariculture ship. In this paper, a simulation methodology is proposed based on potential flow theory, focusing on a semi-submersible large-scale mariculture ship with a rigid frame. Abaqus/Aqua 2020 software is used to establish a full-scale dynamic analysis model of the fishery. In the simulation, a nonlinear implicit integration method is applied, and the non-deterministic boundary conditions of the floating body are optimized using dynamic equilibrium principles. By varying the wave and flow conditions, the variations in mooring forces, vibration amplitudes, and average vibration values are analyzed. Furthermore, the dynamic changes in the overall spatial displacements of the fishery, characteristics of longitudinal and vertical oscillations, and mid-span deflections are analyzed. It is concluded that the mooring force is linearly correlated with the flow velocity, that a higher wave increases the longitudinal oscillation amplitude, and that a longer wave period leads to higher mooring forces and longitudinal heaving amplitude. These dynamic response and displacement results of the mariculture ship are expected to provide a basis for its design and safety assessment.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference21 articles.

1. Statistical Bulletin on National Fisheries Economy for the Year 2021;Yan;China Fish.,2022

2. Overview of Deep-sea Cage Aquaculture Development;Fu;Aquaculture,2021

3. Numerical analysis of a vessel-shaped offshore fish farm;Li;J. Offshore Mech. Arct. Eng.,2018

4. Zhao, Y., Guan, C., Bi, C., Liu, H., and Cui, Y. (2019). Experimental Investigations on Hydrodynamic Responses of a Semi-Submersible Offshore Fish Farm in Waves. J. Mar. Sci. Eng., 7.

5. Study on the Development Mode of Deep-Sea Aquaculture in China;Xu;Mod. Fish.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3