Risk Analysis of Autonomous Underwater Vehicle Operation in a Polar Environment Based on Fuzzy Fault Tree Analysis

Author:

Noh Hyonjeong1,Kang Kwangu1ORCID,Park Jin-Yeong2ORCID

Affiliation:

1. Offshore Industries R&BD Center, Korea Research Institute of Ships & Ocean Engineering, 1350, Geojebuk-ro, Jangmok-myeon, Geoje-si 53201, Gyeongsangnam-do, Republic of Korea

2. Ocean and Maritime Digital Technology Research Division, Korea Research Institute of Ships & Ocean Engineering, 32, Yuseong-daero 1312 Beon-gil, Yuseong-gu, Daejeon 34103, Republic of Korea

Abstract

Autonomous underwater vehicles have long been used in marine explorations, and their application in recent polar expeditions is particularly noteworthy. However, the complexity and extreme conditions of the polar environment pose risks to the stable operation of autonomous underwater vehicles. This study adopted the methodology of fuzzy fault tree analysis to deeply analyze the operational risks of autonomous underwater vehicles in polar environments. While traditional fault tree analysis maps the causal relationships and probabilities between basic and intermediate events, fuzzy fault tree analysis models the uncertainty of data and determines the failure probability by integrating expert opinions. This study revealed that polar environment-induced failures play a more substantial role in autonomous underwater vehicle loss in polar regions than inherent system failures. The study identified ‘recovery failure’ and ‘poor communication’ as the major risk factors facing autonomous underwater vehicles in polar environments, exhibiting the highest failure probabilities. Specifically, among various polar environmental factors, ‘large ice concentration’, ‘ice thickness’, and ‘roughness of ice underside’ under ‘bad’ conditions were found to have a significant impact on the autonomous underwater vehicle’s failure probability. The fuzzy fault tree analysis method in this study successfully filled the gap created by the absence of historical data by effectively incorporating expert opinions, enabling a quantitative presentation of the impact of polar environments, which has been previously difficult to convey in qualitative terms.

Funder

Ministry of Oceans and Fisheries

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3