Asynchronous Pattern-Designed Channel Access Protocol in Underwater Acoustic Wireless Sensor Networks

Author:

Ren Jie123ORCID,Wu Yanbo134ORCID,Zhu Min134ORCID

Affiliation:

1. Ocean Acoustic Technology Laboratory, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Technology Research Center of Ocean Acoustic Equipment, Beijing 100190, China

4. State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Due to the significant propagation delay in underwater sensor networks, conflict retransmission in channel access protocols comes at a high cost. This poses a challenge in scenarios where multiple sensor nodes generate data frames with strong temporal correlations, such as in disaster warning applications. Traditional channel allocation and timeout-based retransmission mechanisms lead to considerable access delays, making it difficult to meet the requirements. To tackle this issue, we propose the asynchronous pattern-designed random access (APDRA) protocol. This protocol enhances the access probability by designing retransmission time intervals for data frames based on pattern design. Additionally, we introduce a successive interference cancellation (SIC) mechanism at the receiver for decoding. This mechanism facilitates the transformation of the conventional method of discarding conflicted data frames into iterative decoding, thereby enhancing transmission efficiency. Via the utilization of simulations, we compare the APDRA protocol conventional underwater medium access control (MAC) protocols and existing retransmission mechanisms. The results demonstrate that the APDRA protocol has the ability to improve both the transmission success ratio (TSR) and reduces the access delay to some extent.

Funder

the National Natural Science Foundation of China under Grant

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3