Path Planning of Deep-Sea Landing Vehicle Based on the Safety Energy-Dynamic Window Approach Algorithm

Author:

Pan Zuodong12,Guo Wei13,Sun Hongming13,Zhou Yue2,Lan Yanjun1

Affiliation:

1. Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China

2. School of Engineering, Shanghai Ocean University, Shanghai 201306, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

To ensure the safety and energy efficiency of autonomous sampling operations for a deep-sea landing vehicle (DSLV), the Safety Energy-Dynamic Window Approach (SE-DWA) algorithm was proposed. The safety assessment sub-function formed from the warning obstacle zone and safety factor addresses the safety issue arising from the excessive range measurement error of forward-looking sonar. The trajectory comparison evaluation sub-function with the effect of reducing energy consumption achieves a reduction in path length by causing the predicted trajectory to deviate from the historical trajectory when encountering “U”-shaped obstacles. The pseudo-power evaluation sub-function with further energy consumption reduction ensures optimal linear and angular velocities by minimizing variables when encountering unknown obstacles. The simulation results demonstrate that compared with the Minimum Energy Consumption-DWA algorithm, the SE-DWA algorithm improves the minimum distance to an actual obstacle zone by 68% while reducing energy consumption by 11%. Both the SE-DWA algorithm and the Maximum Safety-DWA (MS-DWA) algorithm ensure operational safety with minimal distance to the actual obstacle zone, yet the SE-DWA algorithm achieves a 24% decrease in energy consumption. In conclusion, the path planned by the SE-DWA algorithm ensures not only safety but also energy consumption reduction during autonomous sampling operations by a DSLV in the deep sea.

Funder

The Major Scientific and Technological Projects of Hainan Province

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3