The Effects of Wave-Induced Stokes Drift and Mixing Induced by Nonbreaking Surface Waves on the Ocean in a Climate System Ocean Model

Author:

Fan Peng12,Jin Jiangbo13,Guo Run12,Li Guixian12,Zhou Guangqing1

Affiliation:

1. International Center for Climate and Environment Sciences (ICCES), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

2. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3. State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China

Abstract

Oceanic general circulation models (OGCMs) are important tools used to investigate mechanisms for ocean climate variability and predict the ocean change in the future. However, in most current ocean models, the impact of sea surface waves as one of the most significant dynamic processes in the upper ocean is absent. In this study, the Stokes drift and the vertical mixing induced by nonbreaking surface waves derived from the wave model (WAVEWATCH III) are incorporated into a Climate System Ocean Model, and their effects on an ocean climate simulation are analyzed. Numerical experiments show that both physical processes can improve the simulation of sea surface temperature (SST) and mixed layer depth (MLD) in the Southern Hemisphere. The introduction of Stokes drift effectively reduces the subsurface warm bias in the equatorial tropics, which is caused by the weakening of vertical mixing in the equatorial region. The nonbreaking surface wave mainly reduces the temperature bias in the Southern Ocean by enhancing mixing in the upper ocean. For the MLD, the Stokes drift mainly improves the simulation of the winter MLD, and the nonbreaking surface wave improves the summer MLD. For MLD south of 40° S in summer, the introduction of nonbreaking surface waves resulted in a reduction of 11.86 m in MLD bias and 7.8 m in root mean square errors (RMSEs), respectively. For winter subtropical MLD in the Southern Hemisphere, considering the Stokes drift, the MLD bias and RMSEs were reduced by 2.49 and 5.39 m, respectively. Adding these two physical processes simultaneously provides the best simulation performance for the structure of the upper layer. The introduction of sea surface waves effectively modulates the vertical mixing of the upper ocean and then improves the simulation of the MLD. Thus, sea surface waves are very important for ocean simulation, so we will further couple a sea waves model in the Chinese Academy of Sciences Earth System Model (CAS-ESM) as part of their default model component.

Funder

National Key Research and Development Program of China

Youth Innovation Promotion Association of CAS

National Key Scientific and Technological Infrastructure

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3