As-Built Simulation of the High Flux Isotope Reactor

Author:

Betzler Benjamin R.,Chandler David,Evans Thomas M.ORCID,Davidson Gregory G.,Daily Charles R.,Wilson Stephen C.,Mosher Scott W.

Abstract

The Oak Ridge National Laboratory High Flux Isotope Reactor (HFIR) is an 85 MWt flux trap-type research reactor that supports key research missions, including isotope production, materials irradiation, and neutron scattering. The core consists of an inner and an outer fuel element containing 171 and 369 involute-shaped plates, respectively. The thin fuel plates consist of a U3O8-Al dispersion fuel (highly enriched), an aluminum-based filler, and aluminum cladding. The fuel meat thickness is varied across the width of the involute plate to reduce thermal flux peaks at the radial edges of the fuel elements. Some deviation from the designed fuel meat shaping is allowed during manufacturing. A homogeneity scan of each fuel plate checks for potential anomalies in the fuel distribution by scanning the surface of the plate and comparing the attenuation of the beam to calibration standards. While typical HFIR simulations use homogenized fuel regions, explicit models of the plates were developed under the Low-Enriched Uranium Conversion Program. These explicit models typically include one inner and one outer fuel plate with nominal fuel distributions, and then the plates are duplicated to fill the space of the corresponding fuel element. Therefore, data extracted from these simulations are limited to azimuthally averaged quantities. To determine the reactivity and physics impacts of an as-built outer fuel element and generate azimuthally dependent data in the element, 369 unique fuel plate models were generated and positioned. This model generates the three-dimensional (i.e., radial–axial–azimuthal) plate power profile, where the azimuthal profile is impacted by features within the adjacent control element region and beryllium reflector. For an as-built model of the outer fuel element, plate-specific homogeneity data, 235U loading, enrichment, and channel thickness measurements were translated into the model, yielding a much more varied azimuthal power profile encompassed by uncertainty factors in analyses. These models were run with the ORNL-TN and Shift Monte Carlo tools, and they contained upwards of 500,000 cells and 100,000 unique tallies.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3