Robustness Study of Electro-Nuclear Scenario under Disruption

Author:

Liang JialiORCID,Ernoult MarcORCID,Doligez Xavier,David Sylvain,Tillard LéaORCID,Thiollière Nicolas

Abstract

As the future of nuclear power is uncertain, only choosing one development objective for the coming decades can be risky; while trying to achieve several possible objectives at the same time may lead to a deadlock due to contradiction among them. In this work, we study a simple scenario to illustrate the newly developed method of robustness study, which considers possible change of objectives. Starting from the current French fleet, two objectives are considered regarding the possible political choices for the future of nuclear power: A. Complete substitution of Pressurized Water Reactors by Sodium-cooled Fast Reactors in 2180; B. Minimization of all potential nuclear wastes without SFR deployment in 2180. To study the robustness of strategies, the disruption of objective is considered: the objective to be pursued is possibly changed abruptly from A into B at unknown time. To minimize the consequence of such uncertainty, the first option is to identify a robust static strategy, which shows the best performance for both objectives A and B in the predisruption situation. The second option is to adapt a trajectory which pursues initially objective A, for objective B in case of the disruption. To identify and to analyze the adaptively robust strategies, outcomes of possible adaptations upon a given trajectory are compared with the robust static optimum. The temporality of adaptive robustness is analyzed by investigating different adaptation times.

Publisher

MDPI AG

Reference12 articles.

1. Comparative study of fast critical burner reactors and subcritical accelerator driven systems and the impact on transuranics inventory in a regional fuel cycle

2. Transition Towards a Sustainable Nuclear Fuel Cycle;Malambu,2013

3. 4th Generation Sodium-Cooled Fast Reactors–The Astrid Technological Demonstrator,2012

4. Avancées du programme ASTRID,2016

5. Advanced plutonium management in PWR, complementarity of thorium and uranium

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3