A Spatial Econometric Analysis of Weather Effects on Milk Production

Author:

Fan Xinxin1ORCID,Ma Jiechao2

Affiliation:

1. DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801, USA

2. Department of Biomedical Engineering, University of Illinois at Chicago, 820 S. Wood St., Room W103 CSN, Chicago, IL 60612, USA

Abstract

Greenhouse gas (GHG) emission-induced climate change, particularly occurring since the mid-20th century, has been considerably affecting short-term weather conditions, such as increasing weather variability and the incidence of extreme weather-related events. Milk production is sensitive to such changes. In this study, we use spatial panel econometric models, the spatial error model (SEM) and the spatial Durbin model (SDM), with a panel dataset at the state-level varying over seasons, to estimate the relationship between weather indicators and milk productivity, in an effort to reduce the bias of omitted climatic variables that can be time varying and spatially correlated and cannot be directly captured by conventional panel data models. We find an inverse U-shaped effect of summer heat stress on milk production per cow (MPC), indicating that milk production reacts positively to a low-level increase in summer heat stress, and then MPC declines as heat stress continues increasing beyond a threshold value of 72. Additionally, fall precipitation exhibits an inverse U-shaped effect on MPC, showing that milk yield increases at a decreasing rate until fall precipitation rises to 14 inches, and then over that threshold, milk yield declines at an increasing rate. We also find that, relative to conventional panel data models, spatial panel econometric models could improve prediction performance by leading to smaller in-sample and out-sample root mean squared errors. Our study contributes to the literature by exploring the feasibility of promising spatial panel models and resulting in estimating weather influences on milk productivity with high model predicting performance.

Publisher

MDPI AG

Reference78 articles.

1. Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., and Möller, V. (2022). Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

2. Climate Change Effects on Livestock in the Northeast US and Strategies for Adaptation;Hristov;Clim. Change,2018

3. The Impacts of Climate Change on Livestock and Livestock Systems in Developing Countries: A Review of What We Know and What We Need to Know;Thornton;Agric. Syst.,2009

4. Impacts of Climate Change on Milk Production in the United States;Mauger;Prof. Geogr.,2015

5. The Use of Panel Models in Assessments of Climate Impacts on Agriculture;Blanc;Rev. Environ. Econ. Policy,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3