Numerical Analysis for Hydrogen Flame Acceleration during a Severe Accident Initiated by SBLOCA in the APR1400 Containment

Author:

Kang Hyung-Seok,Kim Jongtae,Hong Seong-Wan

Abstract

We performed a hydrogen combustion analysis in the Advanced Power Reactor 1400 MWe (APR1400) containment during a severe accident initiated by a small break loss of coolant accident (SBLOCA) which occurred at a lower part of the cold leg using a multi-dimensional hydrogen analysis system (MHAS) to confirm the integrity of the APR1400 containment. The MHAS was developed by combining MAAP, GASFLOW, and COM3D to simulate hydrogen release, distribution and combustion in the containment of a nuclear power plant during the severe accidents in the containment of a nuclear power reactor. The calculated peak pressure due to the flame acceleration by the COM3D, using the GASFLOW results as an initial condition of the hydrogen distribution, was approximately 555 kPa, which is lower than the fracture pressure 1223 kPa of the APR1400 containment. To induce a higher peak pressure resulted from a strong flame acceleration in the containment, we intentionally assumed several things in developing an accident scenario of the SBLOCA. Therefore, we may judge that the integrity of the APR1400 containment can be maintained even though the hydrogen combustion occurs during the severe accident initiated by the SBLOCA.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Urology,Nephrology

Reference31 articles.

1. The Fukushima Daiichi Accident, Vol.1, Description and Context of the Accident,2015

2. Numerical Analysis for Hydrogen Flame Acceleration during a Severe Accident in the APR1400 Containment Using a Multi-Dimensional Hydrogen Analysis System

3. MAAP4-Modular Accident Analysis Program for LWR Plants;Henry,1994

4. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion;Travis,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3