Abstract
In this paper we report the effect of three different preparation methods on the first hydrogenation of the vanadium-rich BCC alloy Ti16V60Cr24: one-time cold rolling, 5 min ball milling and addition of 4 wt.% of Zr. All samples were synthesized by arc melting. Without Zr addition the alloy was single phase, but when 4 wt.% Zr was added, a secondary zirconium-rich phase was present. However, X-ray diffraction patterns only showed a single-body-centred cubic phase before hydrogenation for all samples. The crystal structure of the fully hydrogenated samples was body-centred tetragonal. The highest hydrogen capacity (3.8 wt.%) was measured for the Zr-doped alloy. The ball-milled alloy also exhibited a high storage capacity and fast kinetics. However, the maximum hydrogen storage capacity slightly decreased after cold rolling. It was found that air exposure increases incubation time for the first hydrogenation. The incubation time was shortened by cold rolling which, however, reduced the hydrogen storage capacity. The Pressure-Composition isotherms of Ti16V60Cr24 + 4 wt.% Zr at 297, 303 and 323 K were determined. The determined enthalpy and entropy of hydrides formation were −41 ± 5 kJ/mol and −134 ± 14 J/mol/K, respectively.
Funder
Natural Sciences and Engineering Research Council
Relations Internationales et Francophonie Quebec
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. From nickel–metal hydride batteries to advanced engines: A comprehensive review of hydrogen's role in the future energy landscape;International Journal of Hydrogen Energy;2024-09
2. Hydrogenation Thermodynamics of Ti16V60Cr24−xFex Alloys (x = 0, 4, 8, 12, 16, 20, 24);Hydrogen;2024-01-26
3. Microstructure and First Hydrogenation Properties of Ti16V60Cr24−xFex + 4 wt.% Zr Alloy for x = 0, 4, 8, 12, 16, 20, 24;Energies;2023-07-14