Environmental Impact Assessment of a 1 kW Proton-Exchange Membrane Fuel Cell: A Mid-Point and End-Point Analysis

Author:

Babatunde Olubayo Moses12ORCID,Akintayo Busola Dorcas1ORCID,Emezirinwune Michael Uzoamaka2,Olanrewaju Oludolapo Akanni1ORCID

Affiliation:

1. Department of Industrial Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Durban 4001, South Africa

2. Department of Electrical Electronics Engineering, University of Lagos, Lagos 100213, Nigeria

Abstract

Proton-exchange membrane fuel cells (PEMFCs) are highly regarded as a promising technology for renewable energy generation; however, the environmental burden in their life cycle is a subject of concern. This study aimed to assess the environmental impact of producing a 1 kW PEMFC by a well-detailed cradle-to-gate evaluation, using mid-point and end-point impact assessment methods. The environmental impacts are related to the extraction of raw materials, consumption of energy, and transportation processes. Mid-point analysis shows that raw materials extraction and processing have a significant share in some impacts, including freshwater eutrophication, human carcinogenic toxicity, and terrestrial acidification. On the other hand, the energy consumed in fuel cell production plays a significant role in the impact categories of fossil resource depletion and global warming. The highest impact is attributed to the human health end-point analysis (0.000866 DALY), followed by the damage to ecosystems (1.04 × 10−6 species/yr) and resources (USD2013 6.16844). Normalization results further strengthen the importance of human health impacts and the necessity to solve problems regarding toxicity. The results of this work can provide directions toward enhancing the environmental sustainability of PEMFC technology and present a case for adopting a holistic approach to sustainability by looking across the life cycle of the technology.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3