Thermodynamics of Reversible Hydrogen Storage: Are Methoxy-Substituted Biphenyls Better through Oxygen Functionality?

Author:

Verevkin Sergey P.12ORCID,Samarov Artemiy A.3ORCID,Vostrikov Sergey V.4

Affiliation:

1. Competence Centre CALOR, Faculty of Interdisciplinary Research, University of Rostock, 18059 Rostock, Germany

2. Department of Physical Chemistry, Kazan Federal University, 420008 Kazan, Russia

3. Department of Chemical Thermodynamics and Kinetics, Saint Petersburg State University, 198504 Saint Petersburg, Russia

4. Chemical-Technological Department, Samara State Technical University, 443100 Samara, Russia

Abstract

The reversible hydrogenation/dehydrogenation of aromatic molecules, known as liquid organic hydrogen carriers, is considered as an attractive option for the safe storage and release of elemental hydrogen. The recently reported efficient synthetic routes to obtain methoxy-biphenyls in high yield make them promising candidates for hydrogen storage. In this work, a series of methoxy-substituted biphenyls and their structural parent compounds were studied. The absolute vapour pressures were measured using the transpiration method and the enthalpies of vaporisation/sublimation were determined. We applied a step-by-step procedure including structure–property correlations and quantum chemical calculations to evaluate the quality of thermochemical data on the enthalpies of phase transitions and enthalpies of formation of the studied methoxy compounds. The data sets on thermodynamic properties were evaluated and recommended for calculations in chemical engineering. A thermodynamic analysis of chemical reactions based on methoxy-biphenyls in the context of hydrogen storage was carried out and the energetics of these reactions were compared with the energetics of reactions of common LOHCs. The influence of the position of the methoxy groups in the rings on the enthalpies of the reactions relevant for hydrogen storage was discussed.

Funder

German Science Foundation

Ministry of Science and Higher Education of the Russian Federation

Kazan Federal University Strategic Academic Leadership Program

Publisher

MDPI AG

Subject

Urology,Nephrology

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3