Technical and Economic Viability of Underground Hydrogen Storage

Author:

Quintos Fuentes José Ernesto1ORCID,Santos Diogo M. F.1ORCID

Affiliation:

1. Center of Physics and Engineering of Advanced Materials, Laboratory for Physics of Materials and Emerging Technologies, Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal

Abstract

Considering the mismatch between the renewable source availability and energy demand, energy storage is increasingly vital for achieving a net-zero future. The daily/seasonal disparities produce a surplus of energy at specific moments. The question is how can this “excess” energy be stored? One promising solution is hydrogen. Conventional hydrogen storage relies on manufactured vessels. However, scaling the technology requires larger volumes to satisfy peak demands, enhance the reliability of renewable energies, and increase hydrogen reserves for future technology and infrastructure development. The optimal solution may involve leveraging the large volumes of underground reservoirs, like salt caverns and aquifers, while minimizing the surface area usage and avoiding the manufacturing and safety issues inherent to traditional methods. There is a clear literature gap regarding the critical aspects of underground hydrogen storage (UHS) technology. Thus, a comprehensive review of the latest developments is needed to identify these gaps and guide further R&D on the topic. This work provides a better understanding of the current situation of UHS and its future challenges. It reviews the literature published on UHS, evaluates the progress in the last decades, and discusses ongoing and carried-out projects, suggesting that the technology is technically and economically ready for today’s needs.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

Urology,Nephrology

Reference84 articles.

1. Underground hydrogen storage: A comprehensive review;Zivar;Int. J. Hydrogen Energy,2020

2. Technical potential of salt caverns for hydrogen storage in Europe;Caglayan;Int. J. Hydrogen Energy,2020

3. Underground hydrogen storage: A review;Miocic;Geol. Soc. Lond. Spec. Publ.,2023

4. Role of Cushion Gas on Underground Hydrogen Storage in Depleted Oil Reservoirs;Kanaani;J. Energy Storage,2022

5. The Evolution of Giant Oil Field Production Behavior;Jakobsson;Nat. Resour. Res.,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3