Spontaneous Ignition of Cryo-Compressed Hydrogen in a T-Shaped Channel System

Author:

Cirrone DonatellaORCID,Makarov Dmitriy,Molkov VladimirORCID

Abstract

Sudden releases of pressurised hydrogen may spontaneously ignite by the so-called “diffusion ignition” mechanism. Several experimental and numerical studies have been performed on spontaneous ignition for compressed hydrogen at ambient temperature. However, there is no knowledge of the phenomenon for compressed hydrogen at cryogenic temperatures. The study aims to close this knowledge gap by performing numerical experiments using a computational fluid dynamics model, validated previously against experiments at atmospheric temperatures, to assess the effect of temperature decrease from ambient 300 K to cryogenic 80 K. The ignition dynamics is analysed for a T-shaped channel system. The cryo-compressed hydrogen is initially separated from the air in the T-shaped channel system by a burst disk (diaphragm). The inertia of the burst disk is accounted for in the simulations. The numerical experiments were carried out to determine the hydrogen storage pressure limit leading to spontaneous ignition in the configuration under investigation. It is found that the pressure limit for spontaneous ignition of the cryo-compressed hydrogen at temperature 80 K is 9.4 MPa. This is more than 3 times larger than pressure limit for spontaneous ignition of 2.9 MPa in the same setup at ambient temperature of 300 K.

Funder

Fuel Cells and Hydrogen 2 Joint Undertaking

Engineering and Physical Sciences Research Council

Innovate UK

Publisher

MDPI AG

Subject

Urology,Nephrology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3