Porous Venturi-Orifice Microbubble Generator for Oxygen Dissolution in Water

Author:

Liew Kelly Chung Shi,Rasdi Athina,Budhijanto Wiratni,Yusoff Mohd Hizami Mohd,Bilad Muhmmad RoilORCID,Shamsuddin NorazanitaORCID,Md Nordin Nik Abdul Hadi,Putra Zulfan Adi

Abstract

Microbubbles with slow rising speed, higher specific area and greater oxygen dissolution are desired to enhance gas/liquid mass transfer rate. Such attributes are very important to tackle challenges on the low efficiency of gas/liquid mass transfer that occurs in aerobic wastewater treatment systems or in the aquaculture industries. Many reports focus on the formation mechanisms of the microbubbles, but with less emphasis on the system optimization and assessment of the aeration efficiency. This work assesses the performance and evaluates the aeration efficiency of a porous venturi-orifice microbubble generator (MBG). The increment of stream velocity along the venturi pathway and orifice ring leads to a pressure drop (Patm > Pabs) and subsequently to increased cavitation. The experiments were run under three conditions: various liquid velocity (QL) of 2.35–2.60 m/s at fixed gas velocity (Qg) of 3 L/min; various Qg of 1–5 L/min at fixed QL of 2.46 m/s; and free flowing air at variable QLs. Results show that increasing liquid velocities from 2.35 to 2.60 m/s imposes higher vacuum pressure of 0.84 to 2.27 kPa. They correspond to free-flowing air at rates of 3.2–5.6 L/min. When the system was tested at constant air velocity of 3 L/min and under variable liquid velocities, the oxygen dissolution rate peaks at liquid velocity of 2.46 m/s, which also provides the highest volumetric mass transfer coefficient (KLa) of 0.041 min−1 and the highest aeration efficiency of 0.287 kgO2/kWh. Under free-flowing air, the impact of QL is significant at a range of 2.35 to 2.46 m/s until reaching a plateau KLa value of 0.0416 min−1. The pattern of the KLa trend is mirrored by the aeration efficiency that reached the maximum value of 0.424 kgO2/kWh. The findings on the aeration efficiency reveals that the venturi-orifice MBG can be further optimized by focusing on the trade-off between air bubble size and the air volumetric velocity to balance between the amount of available oxygen to be transferred and the rate of the oxygen transfer.

Funder

Universiti Teknologi Petronas

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3