Abstract
In this research, we performed energy and exergy assessments of a solar driven power plant. Supercritical carbon dioxide (S-CO2) Brayton cycle is used for the conversion of heat to work. The plant runs on solar energy from 8 a.m. to 4 p.m. and to account for the fluctuations in the solar energy, the plant is equipped with an auxiliary heater operating on hot combustion gases from the combustion chamber. The capital city of Saudi Arabia (Riyadh) is chosen in this study and the solar insolation levels for this location are calculated using the ASHRAE clear-sky model. The solar collector (central receiver) receives solar energy reflected by the heliostats; therefore, a radially staggered heliostat field is generated for this purpose. A suite of code is developed to calculate various parameters of the heliostat field, such as optical efficiencies, intercept factors, attenuation factors and heliostat characteristic angles. S-CO2 Brayton cycle is simulated in commercial software, Aspen HYSYS V9 (Aspen Technology, Inc., Bedford, MA, USA). The cycle is mainly powered by solar energy but assisted by an auxiliary heater to maintain a constant net power input of 80 MW to the cycle. The heliostat field generated, composed of 1207 rows, provides 475 watts per unit heliostat’s area to the central receiver. Heat losses from the central receiver due to natural convection and radiation are significant, with an average annual loss of 10 percent in the heat absorbed by the receiver. Heat collection rate at the central receiver reveals that the maximum support of auxiliary heat is needed in December, at nearly 13% of the net input energy. Exergy analysis shows that the highest exergy loss takes place in the heliostat field that is nearly 42.5% of incident solar exergy.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献