Determining Plant Diversity within Interconnected Natural Habitat Remnants (Ecological Network) in an Agricultural Landscape: A Matter of Sampling Design?

Author:

Liccari FrancescoORCID,Sigura MauriziaORCID,Tordoni EnricoORCID,Boscutti FrancescoORCID,Bacaro GiovanniORCID

Abstract

In intensively used and human-modified landscapes, biodiversity is often confined to remnants of natural habitats. Thus, identifying ecological networks (ENs) necessary to connect these patches and maintain high levels of biodiversity, not only for conservation but also for the effective management of the landscape, is required. However, ENs are often defined without a clear a-priori evaluation of their biodiversity and are seldom even monitored after their establishment. The objective of this study was to determine the adequate number of replicates to effectively characterize biodiversity content of natural habitats within the nodes of an EN in north-eastern Italy, based on vascular plant diversity. Plant communities within habitat types of the EN’s nodes were sampled through a hierarchical sampling design, evaluating both species richness and compositional dissimilarity. We developed an integrated method, consisting of multivariate measures of precision (MultSE), rarefaction curves and diversity partitioning approaches, which was applied to estimate the minimum number of replicates needed to characterize plant communities within the EN, evaluating also how the proposed optimization in sampling size affected the estimations of the characteristics of habitat types and nodes of the EN. We observed that reducing the total sampled replicates by 85.5% resulted to sufficiently characterize plant diversity of the whole EN, and by 72.5% to exhaustively distinguish plant communities among habitat types. This integrated method helped to fill the gap regarding the data collection to monitor biodiversity content within existing ENs, considering temporal and economic resources. We therefore suggest the use of this quantitative approach, based on probabilistic sampling, to conduct pilot studies in the context of ENs design and monitoring, and in general for habitat monitoring.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Reference75 articles.

1. Complexity and stability of ecological networks: a review of the theory

2. Transforming our World: The 2030 Agenda for Sustainable Development, A/RES/70/L.1. Resolution Adopted by the General Assembly,2015

3. Sustainable Development Goals,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3