Proactive Fault Prediction of Fog Devices Using LSTM-CRP Conceptual Framework for IoT Applications

Author:

H Sabireen1,Venkataraman Neelanarayanan1

Affiliation:

1. School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600127, India

Abstract

Technology plays a significant role in our daily lives as real-time applications and services such as video surveillance systems and the Internet of Things (IoT) are rapidly developing. With the introduction of fog computing, a large amount of processing has been done by fog devices for IoT applications. However, a fog device’s reliability may be affected by insufficient resources at fog nodes, which may fail to process the IoT applications. There are obvious maintenance challenges associated with many read-write operations and hazardous edge environments. To increase reliability, scalable fault-predictive proactive methods are needed that predict the failure of inadequate resources of fog devices. In this paper, a Recurrent Neural Network (RNN)-based method to predict proactive faults in the event of insufficient resources in fog devices based on a conceptual Long Short-Term Memory (LSTM) and novel Computation Memory and Power (CRP) rule-based network policy is proposed. To identify the precise cause of failure due to inadequate resources, the proposed CRP is built upon the LSTM network. As part of the conceptual framework proposed, fault detectors and fault monitors prevent the outage of fog nodes while providing services to IoT applications. The results show that the LSTM along with the CRP network policy method achieves a prediction accuracy of 95.16% on the training data and a 98.69% accuracy on the testing data, which significantly outperforms the performance of existing machine learning and deep learning techniques. Furthermore, the presented method predicts proactive faults with a normalized root mean square error of 0.017, providing an accurate prediction of fog node failure. The proposed framework experiments show a significant improvement in the prediction of inaccurate resources of fog nodes by having a minimum delay, low processing time, improved accuracy, and the failure rate of prediction was faster in comparison to traditional LSTM, Support Vector Machines (SVM), and Logistic Regression.

Funder

Vellore Institute of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3