Micro-Electro-Mechanical Systems in Light Stabilization

Author:

Gilewski Marian1ORCID

Affiliation:

1. Faculty of Electrical Engineering, Bialystok University of Technology, 45A Wiejska Street, 15-351 Bialystok, Poland

Abstract

This article discusses application considerations in the micro-electro-mechanical system’s optical sensor. Furthermore, the provided analysis is limited to application issues occurring in research or industrial applications. In particular, a case was discussed where the sensor was used as a feedback signal source. Its output signal is used to stabilize the flux of an LED lamp. Thus, the function of the sensor was the periodic measurement of the spectral flux distribution. The application problem of such a sensor is the output analogue signal conditioning. This is necessary to perform analogue-to-digital conversion and further digital processing. In the discussed case, design limitations come from the specifics of the output signal. This signal is a sequence of rectangular pulses, which can have different frequencies, and their amplitude varies over a wide range. The fact such a signal must be conditioned additionally discourages some optical researchers from using such sensors. The developed driver allows measurement using an optical light sensor in the band from 340 nm to 780 nm with a resolution of about 12 nm; in the range of flux values from about 10 nW to 1 μW, and frequencies up to several kHz. The proposed sensor driver was developed and tested. Measurement results are presented in the paper’s final part.

Funder

Ministry of Science and Higher Education in Poland at the Bialystok University of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3