Water Sink Model for Robot Motion Planning

Author:

Jeon Gi-Yoon,Jung Jin-Woo

Abstract

There are various motion planning techniques for robots or agents, such as bug algorithm, visibility graph, Voronoi diagram, cell decomposition, potential field, and other probabilistic algorithms. Each technique has its own advantages and drawbacks, depending on the number and shape of obstacles and performance criteria. Especially, a potential field has vector values for movement guidance to the goal, and the method can be used to make an instantaneous and smooth robot movement path without an additional controller. However, there may be some positions with zero force value, called local minima, where the robot or agent stops and cannot move any further. There are some solutions for local minima, such as random walk or backtracking, but these are not yet good enough to solve the local minima problem. In this paper, we propose a novel movement guidance method that is based on the water sink model to overcome the previous local minima problem of potential field methods. The concept of the water sink model is to mimic the water flow, where there is a sink or bathtub with a plughole and floating piece on the water. The plughole represents the goal position and the floating piece represents robot. In this model, when the plug is removed, water starts to drain out via the plughole and the robot can always reach the goal by the water flow. The water sink model simulator is implemented and a comparison of experimental results is done between the water sink model and potential field.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3