Genetic Diversity of Five Broadleaved Tree Species and Its Spatial Distribution in Self-Regenerating Stands

Author:

Verbylaitė Rita1,Pliūra Alfas1ORCID,Lygis Vaidotas23,Suchockas Vytautas1,Jankauskienė Jurga2ORCID,Labokas Juozas2ORCID

Affiliation:

1. Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Kedainiai District, LT-58344 Akademija, Lithuania

2. Institute of Botany of Nature Research Centre, LT-08412 Vilnius, Lithuania

3. Forestry Department, Kaunas Forestry and Environmental Engineering University of Applied Sciences, Kaunas District, LT-53101 Girionys, Lithuania

Abstract

European forest ecosystems are currently subject to various disturbances and shifts in land-use legacies. To be able to forecast the trends and consequences of the changes in genetic diversity following these disturbances, it is of crucial importance to understand the genetic dynamics of natural tree populations. The present study aimed at determining the extent and spatial distribution of genetic diversity in five common broadleaved tree species in Lithuania in both mature (putatively maternal) stands and in natural regeneration (juveniles) of the respective species. The genetic diversity of Quercus robur, Betula pendula, Populus tremula, Alnus glutinosa, and Fraxinus excelsior was assessed using eight nuclear microsatellite loci for each species; 417 samples of regenerating juveniles and 141 samples of putatively maternal trees were analyzed in total. The investigated populations of self-regenerating Q. robur, B. pendula, A. glutinosa, and F. excelsior juveniles showed spatially random genetic structures, while P. tremula regenerated mostly via root suckers and formed clonal groups. The genetic diversity in regenerating juveniles of all species was as high as in putatively maternal stands. The detection of adequate (substantial) genetic diversity in the studied regenerating populations of these five broadleaved tree species suggests that in Lithuania these species have a good potential to adapt to changing environmental conditions.

Funder

Lithuanian Research Council

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3