Responses of Fine Root Traits and Soil Nitrogen to Fertilization Methods and Nitrogen Application Amounts in a Poplar Plantation

Author:

Yan Xiaoli1,Dai Tengfei2,Gao Yuan2,Di Nan2,Jia Liming2

Affiliation:

1. College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing 100083, China

Abstract

Inappropriate fertilization management practices have led to low timber production in intensive plantation systems in China. Thus, optimized conventional or advanced fertilization management practices are needed. We aimed to quantify whether optimized furrow fertilization (FF) is comparable to advanced drip fertigation (DF) and to make recommendations regarding fertilization management strategies for poplar plantations. A completely randomized block design experiment with two fertilization methods (DF and FF) and four N application amounts (F0: 0, F1: 68, F2: 113, and F3: 158 kg N·ha−1·yr−1) was carried out on a Populus × euramericana cv. ‘Guariento’ plantation. Fine root biomass density (FRBD), fine root length density (FRLD), specific root length (SRL), soil total nitrogen (STN), soil inorganic nitrogen (SIN), soil ammonium (NH4+-N) and nitrate nitrogen (NO3−-N) were measured. The productivity increment was calculated based on tree surveys. The results showed that FRBD and FRLD decreased with the soil depth, and more than 86% was distributed within the 40 cm soil depth. FRBD, FRLD, productivity increment and soil N increased with an increasing amount of N application. DF treatments achieved 117%, 94% and 10% higher FRBD, FRLD and productivity increments, respectively, than did FF treatments. The averages of STN, SIN, NH4+-N and NO3−-N under FF were higher than those under DF, leading to higher concentrations of residual NO3−-N in deep soil. Beneficial management practices for fine root growth were evaluated in the following order: water coupled with N > only N ≥ only water > control. FRBD was positively correlated with the productivity increment. Therefore, fine root extension to increase soil resource absorption yields greater productivity under DF treatments. Drip fertilization is recommended as a better fertilization method to greatly promote the growth of fine roots, as well as productivity and residual lower soil N for poplar plantations.

Funder

National Natural Science Foundation of China

Distinguished Young Scientific Research Talent Program of Fujian Agriculture and Forestry University

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3