Abstract
Vehicular networks are becoming increasingly dense due to expanding wireless services and platooning has been regarded as a promising technology to improve road capacity and on-road safety. Constrained by limited resources, not all communication links in platoons can be allocated to the resources without suffering interference. To guarantee the quality of service, it is required to determine the set of served services at which the scale of demand exceeds the capability of the network. To increase the number of guaranteed services, the resource allocation has to be adjusted to adapt to the dynamic environment of the vehicular network. However, resource re-allocation results in additional costs, including signal overhead and latency. To increase the number of guaranteed services at a low-cost in a resource-limited vehicular network, we propose a time dynamic optimization method that constrains the network re-allocation rate. To decrease the computational complexity, the time dynamic optimization problem is converted into a deterministic optimization problem using the Lyapunov optimization theory. The simulation indicates that the analytical results do approximate the reality, and that the proposed scheme results in a higher number of guaranteed services as compared to the results of a similar algorithm.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献