Monitoring Respiratory Motion during VMAT Treatment Delivery Using Ultra-Wideband Radar

Author:

Fallatah Anwar,Bolic Miodrag,MacPherson Miller,La Russa Daniel J.

Abstract

The goal of this paper is to evaluate the potential of a low-cost, ultra-wideband radar system for detecting and monitoring respiratory motion during radiation therapy treatment delivery. Radar signals from breathing motion patterns simulated using a respiratory motion phantom were captured during volumetric modulated arc therapy (VMAT) delivery. Gantry motion causes strong interference affecting the quality of the extracted respiration motion signal. We developed an artificial neural network (ANN) model for recovering the breathing motion patterns. Next, automated classification into four classes of breathing amplitudes is performed, including no breathing, breath hold, free breathing and deep inspiration. Breathing motion patterns extracted from the radar signal are in excellent agreement with the reference data recorded by the respiratory motion phantom. The classification accuracy of simulated deep inspiration breath hold breathing was 94% under the worst case interference from gantry motion and linac operation. Ultra-wideband radar systems can achieve accurate breathing rate estimation in real-time during dynamic radiation delivery. This technology serves as a viable alternative to motion detection and respiratory gating systems based on surface detection, and is well-suited to dynamic radiation treatment techniques. Novelties of this work include detection of the breathing signal using radar during strong interference from simultaneous gantry motion, and using ANN to perform adaptive signal processing to recover breathing signal from large interference signals in real time.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3