Advancing Sensitivity in Guided-Wave Surface Plasmon Resonance Sensor through Integration of 2D BlueP/MoS2 Hybrid Layers

Author:

Yuan Xixi1ORCID,Wu Leiming2,Qin Yuwen2ORCID

Affiliation:

1. College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China

2. Key Laboratory of Photonic Technology for Integrated Sensing and Communication, Ministry of Education of China, Guangdong University of Technology, Guangzhou 510006, China

Abstract

The surface plasmon resonance (SPR) signal, generated from the Kretschmann configuration, has been developed as an effective detection technology in chemical and biological sensors. The sensitivity of SPR signals to changes in the surrounding media makes it a valuable tool, as even a slight variation in refractive index can cause a significant change in SPR signals, such as phase, intensity, and resonance angle. However, the detection of ultralow changes in refractive index, which occur in chemical reactions or biological actions, remains a challenge for conventional SPR sensors due to their limited sensitivity. To overcome this limitation, we theoretically propose a novel guided-wave SPR (GWSPR) configuration coated with a few-layer blue phosphorene (blueP)/MoS2 hybrid structure. This configuration aims to enhance the electric field and subsequently achieve a significant improvement in sensitivity. The results of our study demonstrate that the proposed blueP/MoS2-based GWSPR sensor exhibits a high sensitivity of 290°/RIU, which represents an impressive enhancement of approximately 82.4% compared to the conventional Au-based SPR sensor. This advancement addresses the challenge of detecting ultralow changes in refractive index and offers significant potential for enhancing the performance of chemical and biological sensors.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3